3,685 research outputs found

    A factorization of a super-conformal map

    Full text link
    A super-conformal map and a minimal surface are factored into a product of two maps by modeling the Euclidean four-space and the complex Euclidean plane on the set of all quaternions. One of these two maps is a holomorphic map or a meromorphic map. These conformal maps adopt properties of a holomorphic function or a meromorphic function. Analogs of the Liouville theorem, the Schwarz lemma, the Schwarz-Pick theorem, the Weierstrass factorization theorem, the Abel-Jacobi theorem, and a relation between zeros of a minimal surface and branch points of a super-conformal map are obtained.Comment: 21 page

    Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point

    Full text link
    Spin fluctuations (SF) and SF-mediated superconductivity (SC) in quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum critical point (QCP) are investigated by using the self-consistent renormalization theory for SF and the strong coupling theory for SC. We introduce a parameter y0 as a measure for the distance from the AFQCP which is approximately proportional to (x-xc), x being the electron (e) or hole (h) doping concentration to the half-filled band and xc being the value at the AFQCP. We present phase diagrams in the T-y0 plane including contour maps of the AF correlation length and AF and SC transition temperatures TN and Tc, respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP. The calculated one-electron spectral density shows a pseudogap in the high-density-of-states region near (pi,0) below around a certain temperature T* and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure

    Fermi surface and antiferromagnetism in the Kondo lattice: an asymptotically exact solution in d>1 Dimensions

    Full text link
    Interest in the heavy fermion metals has motivated us to examine the quantum phases and their Fermi surfaces within the Kondo lattice model. We demonstrate that the model is soluble asymptotically exactly in any dimension d>1, when the Kondo coupling is small compared with the RKKY interaction and in the presence of antiferromagnetic ordering. We show that the Kondo coupling is exactly marginal in the renormalization group sense, establishing the stability of an ordered phase with a small Fermi surface, AFs. Our results have implications for the global phase diagram of the heavy fermion metals, suggesting a Lifshitz transition inside the antiferromagnetic region and providing a new perspective for a Kondo-destroying antiferromagnetic quantum critical point.Comment: 4 pages, 4 figures; (v2) corrected typos and added reference/acknowledgment; (v3) version as published in Physical Review Letters (July, 2007

    Anisotropy, Itineracy, and Magnetic Frustration in High-Tc Iron Pnictides

    Full text link
    Using first-principle density functional theory calculations combined with insight from a tight-binding representation, dynamical mean field theory, and linear response theory, we have extensively investigated the electronic structures and magnetic interactions of nine ferropnictides representing three different structural classes. The calculated magnetic interactions are found to be short-range, and the nearest (J1aJ_{1a}) and next-nearest (J2J_{2}) exchange constants follow the universal trend of J_{1a}/2J_{2}\sim 1, despite their itinerant origin and extreme sensitivity to the z-position of As. These results bear on the discussion of itineracy versus magnetic frustration as the key factor in stabilizing the superconducting ground state. The calculated spin wave dispersions show strong magnetic anisotropy in the Fe plane, in contrast to cuprates.Comment: Fig.4 updated: Phys. Rev. Lett (in press

    Analysis of Superconductivity in d-p Model on Basis of Perturbation Theory

    Full text link
    We investigate the mass enhancement factor and the superconducting transition temperature in the d-p model for the high-\Tc cuprates. We solve the \'Eliashberg equation using the third-order perturbation theory with respect to the on-site Coulomb repulsion UU. We find that when the energy difference between d-level and p-level is large, the mass enhancement factor becomes large and \Tc tends to be suppressed owing to the difference of the density of state for d-electron at the Fermi level. From another view point, when the energy difference is large, the d-hole number approaches to unity and the electron correlation becomes strong and enhances the effective mass. This behavior for the electron number is the same as that of the f-electron number in the heavy fermion systems. The mass enhancement factor plays an essential role in understanding the difference of \Tc between the LSCO and YBCO systems.Comment: 4pages, 9figures, to be published in J. Phys. Soc. Jp

    Field-induced paramagnons at the metamagnetic transition in Ca1.8Sr0.2RuO4

    Get PDF
    The magnetic excitations in Ca1.8Sr0.2RuO4 were studied across the metamagnetic transition and as a function of temperature using inelastic neutron scattering. At low temperature and low magnetic field the magnetic response is dominated by a complex superposition of incommensurate antiferromagnetic fluctuations. Upon increasing the magnetic field across the metamagnetic ransition, paramagnon and finally well-defined magnon scattering is induced, partially suppressing the incommensurate signals. The high-field phase in Ca1.8Sr0.2RuO4 has, therefore, to be considered as an intrinsically ferromagnetic state stabilized by the magnetic field

    Coexistence of Superconductivity and Antiferromagnetism in Heavy-Fermion Superconductor CeCu_{2}(Si_{1-x}Ge_{x})_{2} Probed by Cu-NQR --A Test Case for the SO(5) Theory--

    Full text link
    We report on the basis of Cu-NQR measurements that superconductivity (SC) and antiferromagnetism (AF) coexist on a microscopic level in CeCu_{2}(Si_{1-x}Ge_{x})_{2}, once a tiny amount of 1%Ge (x = 0.01) is substituted for Si. This coexistence arises because Ge substitution expands the unit-cell volume in nearly homogeneous CeCu2Si2 where the SC coexists with slowly fluctuating magnetic waves. We propose that the underlying exotic phases of SC and AF in either nearly homogeneous or slightly Ge substituted CeCu2Si2 are accountable based on the SO(5) theory that unifies the SC and AF. We suggest that the mechanism of the SC and AF is common in CeCu2Si2.Comment: 7 pages with 6 figures embedded in the text. To be published in J. Phys. Condens. Matter, 200

    Novel critical exponent of magnetization curves near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3 (A = Ca, La0.5Na0.5, and La)

    Full text link
    We report a novel critical exponent delta=3/2 of magnetization curves M=H^{1/delta} near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3 (A = Ca, La0.5Na0.5, and La), which the mean field theory of the Ginzburg-Landau-Wilson type fails to reproduce. The effect of dirty ferromagnetic spin fluctuations might be a key.Comment: 4 pages, 5 figure

    Correlated band theory of spin and orbital contributions to Dzyaloshinskii-Moriya interactions

    Get PDF
    A new approach for calculations of Dzyaloshinskii-Moriya interactions in molecules and crystals is proposed. It is based on the exact perturbation expansion of total energy of weak ferromagnets in the canting angle with the only assumption of local Hubbard-type interactions. This scheme leads to a simple and transparent analytical expression for Dzyaloshinskii-Moriya vector with a natural separation into spin and orbital contributions. The main problem was transferred to calculations of effective tight-binding parameters in the properly chosen basis including spin-orbit coupling. Test calculations for La2_2CuO4_4 give the value of canting angle in a good agreement with experimental data.Comment: 4 pages, 1 figur

    Metamagnetic Quantum Criticality Revealed by 17O-NMR in the Itinerant Metamagnet Sr3Ru2O7

    Full text link
    We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7 as a function of magnetic field and temperature using 17O-NMR. This system sits close to a metamagnetic quantum critical point (MMQCP) for the field perpendicular to the ruthenium oxide planes. We confirm Fermi-liquid behavior at low temperatures except for a narrow field region close to the MMQCP. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T is enhanced on approaching the metamagnetic critical field of 7.9 T and at the critical field 1/T1T continues to increase and does not show Fermi- liquid behavior down to 0.3 K. The temperature dependence of T1T in this region suggests the critical temperature Theta to be 0 K, which is a strong evidence that the spin dynamics possesses a quantum critical character. Comparison between uniform susceptibility and 1/T1T reveals that antiferromagnetic fluctuations instead of two-dimensional ferromagnetic fluctuations dominate the spin fluctuation spectrum at the critical field, which is unexpected for itinerant metamagnetism.Comment: 5 pages, 4 figures, Accepted by Phys. Rev. Let
    corecore